On the Monge-Ampère equation via prestrained elasticity

Marta Lewicka

University of Pittsburgh

- 27 January 2017, ICERM, Providence -

Workshop for Professor Susan Friedlander

An old story: isometric immersions (equidimensional)

Assume that $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{n}$ satisfies: $\nabla u(x)^{T} \nabla u(x)=I d_{n}$

- Equation of isometric immersion: $\left\langle\partial_{i} u, \partial_{j} u\right\rangle=\delta_{i j}=\left\langle e_{i}, e_{j}\right\rangle$ (For $u \in C^{1}$, this is equivalent to u preserving length of curves)

- Equivalent to: $\nabla u \in O(n)=\left\{R ; R^{T} R=l d\right\}=S O(n) \cup S O(n) J$

- Liouville (1850), Reshetnyak (1967): $u \in W^{1, \infty}$ and $\nabla u \in S O(n)$ a.e. in $\Omega \Rightarrow \nabla u \equiv$ const $\Rightarrow u(x)=R x+b$ rigid motion

An old story: isometric immersions (equidimensional)

- Gromov (1973): Convex integration: $\exists u \in W^{1, \infty}$ such that $(\nabla u)^{T} \nabla u=I d$ a.e. in Ω, and ∇u takes values in $S O(n)$ and in $S O(n) \mathrm{J}$, in every open $U \subset \Omega$.

Even more: $\exists u$ arbitrarily close to any u_{0} with $0<\left(\nabla u_{0}\right)^{T} \nabla u_{0}<l d$

Example:
Given $u_{0}:(0,1) \rightarrow \mathbb{R}$ with $\left(u_{0}^{\prime}\right)^{2}<1$
want: $u_{k} \xrightarrow{\text { unitomy }} u_{0}$ with $\left(u_{k}^{\prime}\right)^{2}=1$
more oscillations as $k \rightarrow \infty$

Hevea project: Inst. Camille Jordan, Lab J. Kuntzmann, Gipsa-Lab (France)

Isometric immersions of Riemann manifold (Ω, G)

Let $G \in \mathcal{C}^{\infty}\left(\Omega, \mathbb{R}_{\text {sym },+}^{n \times n}\right)$. Look for $u: \Omega \rightarrow \mathbb{R}^{n}$ so that $(\nabla u)^{T} \nabla u=G$ in Ω

Theorem (Gromov 1986)

Let $u_{0}: \Omega \rightarrow \mathbb{R}^{n}$ be smooth short immersion, i.e.: $0<\left(\nabla u_{0}\right)^{T} \nabla u_{0}<G$ in Ω. Then: $\forall \varepsilon>0 \quad \exists u \in W^{1, \infty} \quad\left\|u-u_{0}\right\|_{C^{0}}<\varepsilon$ and $(\nabla u)^{T} \nabla u=G$.

Theorem (Myers-Steenrod 1939, Calabi-Hartman 1970)

Let $u \in W^{1, \infty}$ satisfy $(\nabla u)^{T} \nabla u=G$ and $\operatorname{det} \nabla u>0$ a.e. in Ω. (For example, $u \in C^{1}$ enough). Then $\Delta_{G} u=0$ and so u is smooth. In fact, u is unique up to rigid motions, and: $\exists u \Leftrightarrow \operatorname{Riem}(G) \equiv 0$ in Ω.

$$
E(u)=\int_{\Omega} W\left((\nabla u) G^{-1 / 2}(x)\right) \mathrm{d} x \quad \begin{aligned}
& W(F) \sim \operatorname{dist}^{2}(F, S O(3)) \\
& G \in C^{\infty}\left(\Omega, \mathbb{R}_{\text {sym,+ }}^{3 \times 3}\right) \text { incompatibility } \\
& \text { metric tensor }
\end{aligned}
$$

$$
\text { - } \begin{aligned}
E(u)=0 & \Leftrightarrow \nabla u(x) \in S O(3) G^{1 / 2}(x) \forall \text { a.e. } x \\
& \Leftrightarrow(\nabla u)^{T} \nabla u=G \text { and } \operatorname{det} \nabla u>0
\end{aligned}
$$

Non-Euclidean elasticity

Lemma (L-Pakzad 2009)

$$
\inf _{u \in W^{1,2}} E(u)>0 \Leftrightarrow \operatorname{Riem}(G) \not \equiv 0
$$

Thin non-Euclidean plates: $\Omega=\Omega^{h}=\omega \times(-h / 2, h / 2), \quad \omega \subset \mathbb{R}^{2}$

- As $h \rightarrow 0$: Scaling of: $\inf E^{h} \sim h^{\beta}$? $\operatorname{argmin} E^{h} \rightarrow \operatorname{argmin} I_{\beta}$?
- Hierarchy of theories I_{β}, where β depends on Riem $\left(G^{h}\right)$ Bhattacharya, Li, L., Mahadevan, Pakzad, Raoult, Schaffner
- When $G=l d$: dimension reduction in nonlinear elasticity seminal analysis by LeDret-Raoult 1995, Friesecke-James-Muller 2006

Manufacturing residually-strained thin films:

- Shaping of elastic sheets by prescription of Non-Euclidean metrics (Klein, Efrati, Sharon) Science, 2007
- Half-tone gel lithography (Kim, Hanna, Byun, Santangelo, Hayward) Science, 2012
- Defect-activated liquid crystal elastomers (Ware, McConney, Wie, Tondiglia, White) Science, 2015

The Monge-Ampère constrained energy

$$
\text { Energy } \quad E^{h}\left(u^{h}\right)=\frac{1}{h} \int_{\Omega^{h}} W\left(\left(\nabla u^{h}\right)\left(G^{h}\right)^{-1 / 2}(x)\right) \mathrm{d} x
$$

Theorem (L-Ochoa-Pakzad 2014)

Let: $G^{h}\left(x^{\prime}, x_{3}\right)=I d_{3}+2 h S\left(x^{\prime}\right)$. Then:

- $\inf E^{h} \leq C h^{3} \Leftrightarrow \exists v \in W^{2,2}(\omega), \quad \operatorname{det} \nabla^{2} v=-$ curl curl $S_{2 \times 2}$
- $\frac{1}{h^{3}} E^{h} \xrightarrow{\Gamma} I$, where I is the 2 -d energy:

$$
I(v)=\int_{\omega}\left|\nabla^{2} v\right|^{2} \text { for } v \in W^{2,2}(\omega), \quad \operatorname{det} \nabla^{2} v=- \text { curl curl } S_{2 \times 2}
$$

[More general result for $G^{h}\left(x^{\prime}, x_{3}\right)=I d_{3}+2 h^{\gamma} S\left(x^{\prime}\right)$ and $\gamma \in(0,2)$.
When $\gamma \geq 2$ then higher order models.]
Structure of minimizers to $E^{h}: u^{h}\left(x^{\prime}, 0\right)=x^{\prime}+h^{1 / 2} v e_{3}$

- $\kappa\left(\nabla\left(i d+h^{1 / 2} v e_{3}\right)^{T} \nabla\left(i d+h^{1 / 2} v e_{3}\right)\right)=\kappa\left(I d_{2}+h \nabla v \otimes \nabla v\right)$

$$
=-\frac{1}{2} h \text { curl curl }(\nabla v \otimes \nabla v)+O\left(h^{2}\right)=h \operatorname{det} \nabla^{2} v+O\left(h^{2}\right)
$$

- Gauss curvature: $\kappa\left(I d_{2}+2 h S_{2 \times 2}\right)=-h$ curl curl $S_{2 \times 2}+O\left(h^{2}\right)$

Weak formulation of the Monge-Ampère equation

$\operatorname{det} \nabla^{2} v=f \quad \bullet$ existence of $W^{2,2}$ solutions is not guaranteed

$$
\text { Det } \nabla^{2} v=-\frac{1}{2} \text { curl curl }(\nabla v \otimes \nabla v) \quad v \in W^{1,2}(\omega)
$$

Need to solve: \quad curl curl $(\nabla v \otimes \nabla v)=$ curl curl $S_{2 \times 2}$ where $S_{2 \times 2}=\lambda I d_{2} \quad$ with $\quad \Delta \lambda=-2 f$ in ω.

Equivalently:

$$
\nabla v \otimes \nabla v+\operatorname{sym} \nabla w=S_{2 \times 2}
$$

3 eqns in 3 unknowns on a 2d domain

Similar problem 1: $\quad(\nabla u)^{T} \nabla u=G_{2 \times 2}$, where $u: \omega \rightarrow \mathbb{R}^{3}$ isometric immersion of 2 d metric in \mathbb{R}^{3}.

- Nirenberg (1953): $\forall G_{2 \times 2}, \kappa>0 \exists$ smooth isometr. embed. in \mathbb{R}^{3}
- Poznyak-Shikin (1995): Same true for $\kappa<0$ on bounded $\omega \subset \mathbb{R}^{2}$
- Nash-Kuiper (1956): $\forall n$-dim $G \exists C^{1, \alpha}$ isometr. embed. in \mathbb{R}^{n+1}

Case $G_{2 \times 2}$: Borisov (2004), Conti-Delellis-Szekelyhidi (2010) $\alpha<\frac{1}{7}$
Delellis-Inauen-Szekelyhidi (2015) $\alpha<\frac{1}{5}$.

- $C^{1, \frac{2}{3}+}$ solutions are rigid - convex case: Borisov (2004).

Weak formulation of the Monge-Ampère equation

$\operatorname{det} \nabla^{2} v=f \quad \bullet$ existence of $W^{2,2}$ solutions is not guaranteed

$$
\text { Det } \nabla^{2} v=-\frac{1}{2} \text { curl curl }(\nabla v \otimes \nabla v) \quad v \in W^{1,2}(\omega)
$$

Need to solve: \quad curl curl $(\nabla v \otimes \nabla v)=$ curl curl $S_{2 \times 2}$ where $S_{2 \times 2}=\lambda I d_{2} \quad$ with $\quad \Delta \lambda=-2 f$ in ω.

Equivalently:

$$
\nabla v \otimes \nabla v+\operatorname{sym} \nabla w=S_{2 \times 2}
$$

3 eqns in 3 unknowns on a 2d domain

Similar problem 2: $\quad \partial_{t} u+\operatorname{div}(u \otimes u)+\nabla p=0, \quad \operatorname{div} u=0$ 3d incompressible Euler equations, $\quad(u, p): \mathbb{T}^{4} \times[0, T] \rightarrow \mathbb{R}^{4}$.

- Onsager's conjecture: rigidity/flexibility treshold $=\frac{1}{3}$.
- Constantin-E-Titi, Eyink (1994): Every $L^{\infty}\left(0, T ; \mathcal{C}^{\alpha}\left(\mathbb{T}^{3}\right)\right)$ solution, $\alpha>\frac{1}{3}$, is energy conserving.
- Delellis, Szekelyhidi, Buckmaster, Isett: existence of non-energyconserving solutions, for every $\alpha<\frac{1}{3}$: compactly supported in time; arbitrary temporal kinetic energy profile.

Rigidity for the Monge-Ampère equation

Theorem (L-Pakzad 2015)

Let $v \in C^{1, \frac{2}{3}+}$. If $\operatorname{Det} \nabla^{2} v=0$, then v is developable, i.e. $\forall x \in \omega$:

- either v is affine in $B_{\varepsilon}(x)$
- or ∇v is constant on a segment through x, joining $\partial \omega$ on both ends.

If $\operatorname{Det} \nabla^{2} v \geq c>0$ is Dini continuous, then v is locally convex and an Alexandrov solution in ω.

Theorem (Pakzad 2004, Sverak 1991, L-Mahadevan-Pakzad 2013)
Let $v \in W^{2,2}$. If $\operatorname{det} \nabla^{2} v=0$ then v is developable and $v \in C^{1}$. If $\operatorname{det} \nabla^{2} v \geq c>0$ then $v \in C^{1}$ and $v(o r-v)$ is locally convex.

Flexibility for the Monge-Ampère equation

Theorem (L-Pakzad 2015)

Let $\left(v_{0}, w_{0}\right): \omega \rightarrow \mathbb{R} \times \mathbb{R}^{2}$ be a smooth short infinitesimal, i.e.:

$$
\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla w_{0}<S_{2 \times 2}
$$

Then $\exists\left(v_{n}, w_{n}\right) \in C^{1, \frac{1}{7}-}\left(v_{n}, w_{n}\right) \xrightarrow{\text { uniormly }}\left(v_{0}, w_{0}\right)$ and

$$
\nabla v_{n} \otimes \nabla v_{n}+\operatorname{sym} \nabla w_{n}=S_{2 \times 2}
$$

- Extension [L-Pakzad-Inauen 2017]: flexibility at $C^{\frac{1}{5}-}$.

Corollary ("Ultimate flexibility")

Let $f \in L^{\frac{7}{6}}(\omega)$ and $\alpha<\frac{1}{7}$. The set of $C^{1, \alpha}(\bar{\omega})$ solutions to the Monge Ampère equation: Det $\nabla^{2} v=f$ is dense in the space $C^{0}(\bar{\omega})$.

- For $f \in L^{p}(\omega)$ and $p \in\left(1, \frac{7}{6}\right)$, the density holds for any $\alpha<1-\frac{1}{p}$.
- Det ∇^{2} is weakly discontinuous everywhere in $W^{1,2}(\omega)$.

Consequences for energy scaling: flexibility at $C^{1, \frac{1}{7}-} \Rightarrow \inf E^{h} \leq C h^{\frac{9}{4}}$. (If flexibility at $C^{1, \frac{1}{3}-}$, optimal for Nash-Kuiper, $\Rightarrow \inf E^{h} \leq C h^{\frac{10}{4}}$).
Energy gap: $\mathrm{Ch}^{3-} \leq \inf E^{h} \leq \mathrm{Ch}^{\frac{10}{4}+}$: residual energy? fine crumpling?

Rigidity for the Monge-Ampère equation

Tool: Degree formula via the commutator estimate.
Commutator estimate argument in the Euler rigidity:

$$
\partial_{t} u+\operatorname{div}(u \otimes u)+\nabla p=0, \quad \operatorname{div} u=0 .
$$

- Mollify on scale ε : $\partial_{t}\left(u_{\varepsilon}\right)+\operatorname{div}(u \otimes u)_{\varepsilon}+\nabla p_{\varepsilon}=0, \operatorname{div} u_{\varepsilon}=0$
- Integrate by parts with $u_{\varepsilon}: \frac{d}{d t}\left(\int \frac{1}{2}\left|u_{\varepsilon}\right|^{2}\right)-\int\left\langle(u \otimes u)_{\varepsilon}: \nabla u_{\varepsilon}\right\rangle=0$
- Add new trilinear term for free:

$$
\frac{d}{d t}\left(\int \frac{1}{2}\left|u_{\varepsilon}\right|^{2}\right)=\int\left\langle(u \otimes u)_{\varepsilon}-\left(u_{\varepsilon} \otimes u_{\varepsilon}\right): \nabla u_{\varepsilon}\right\rangle .
$$

Use commutator estimate: $\left\|(f g)_{\varepsilon}-f_{\varepsilon} g_{\varepsilon}\right\|_{C^{k}} \leq C \varepsilon^{2 \alpha-k}\|f\|_{\mathcal{C}^{0, \alpha}}\|g\|_{C^{0, \alpha}}$
to bound: $\left|\int\left\langle(u \otimes u)_{\varepsilon}-(u \otimes u)_{\varepsilon}: \nabla u_{\varepsilon}\right\rangle\right| \leq C \varepsilon^{2 \alpha} \varepsilon^{\alpha-1}=C \varepsilon^{3 \alpha-1}$
$\rightarrow 0$ when $\alpha>\frac{1}{3}$.
For the Monge-Ampère equation, use similar argument in the geometrical context.

Rigidity for the Monge-Ampère equation

Lemma (L-Pakzad 2015)

Let $v \in \mathcal{C}^{1, \frac{2}{3}+}, f \in L^{1+}$ satisfy: $\operatorname{Det} \nabla^{2} v=f$. Then:

$$
\int_{U}(\phi \circ \nabla v) f=\int_{\mathbb{R}^{2}} \phi(y) \operatorname{deg}(\nabla v, U, y) \mathrm{d} y \quad \begin{aligned}
& \forall \phi \in L^{\infty}(U \subseteq \omega) \\
& \text { supp } \phi \subset \mathbb{R}^{2} \backslash(\nabla v)(\partial U) .
\end{aligned}
$$

Proof. $\quad \frac{1}{2} \nabla v \otimes \nabla v+\operatorname{sym} \nabla w=A, \quad f=-$ curlcurl A.

- Mollify on scale $\varepsilon: \frac{1}{2}(\nabla v \otimes \nabla v)_{\varepsilon}+\operatorname{sym} \nabla w_{\varepsilon}=A_{\varepsilon}$
- Apply degree formula to smooth v_{ε} :

$$
\int_{U}\left(\phi \circ \nabla v_{\varepsilon}\right) \operatorname{det} \nabla^{2} v_{\varepsilon}=\int_{\mathbb{R}^{2}} \phi(y) \operatorname{deg}\left(\nabla v_{\varepsilon}, U, y\right) \mathrm{d} y \rightarrow R H S
$$

- Error in LHS: $\int_{U}\left(\phi \circ \nabla v_{\varepsilon}\right) \operatorname{det} \nabla^{2} v_{\varepsilon}-(\phi \circ \nabla v) f$

$$
=\int\left(\phi \circ \nabla v_{\varepsilon}-\phi \circ \nabla v\right) f-\int\left(\phi \circ \nabla v_{\varepsilon}\right) \operatorname{curl} \operatorname{curl}\left(\frac{1}{2} \nabla v_{\varepsilon} \otimes \nabla v_{\varepsilon}-A\right)
$$

- first term $\rightarrow 0$, last term: $\int\left(\phi \circ \nabla v_{\varepsilon}\right) \operatorname{curl} \operatorname{curl}\left(\frac{1}{2} \nabla v_{\varepsilon} \otimes \nabla v_{\varepsilon}-A_{\varepsilon}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \int\left(\phi \circ \nabla v_{\varepsilon}\right) \operatorname{curl} \operatorname{curl}\left(\nabla v_{\varepsilon} \otimes \nabla v_{\varepsilon}-(\nabla v \otimes \nabla v)_{\varepsilon}\right) \\
& =-\frac{1}{2} \int\left\langle\nabla^{\perp}\left(\phi \circ \nabla v_{\varepsilon}\right), \operatorname{curl}\left(\nabla v_{\varepsilon} \otimes \nabla v_{\varepsilon}-(\nabla v \otimes \nabla v)_{\varepsilon}\right)\right\rangle
\end{aligned}
$$

bounded by: $C \varepsilon^{\alpha-1} \varepsilon^{2 \alpha-1}=C \varepsilon^{3 \alpha-2} \quad \rightarrow 0$ when $\alpha>\frac{2}{3}$.

Rigidity for the Monge-Ampère equation

Lemma (L-Pakzad 2015)

Let $v \in C^{1, \frac{2}{3}+}, f \in L^{1+}$ satisfy: $\operatorname{Det} \nabla^{2} v=f$. Then:
$\int_{U}(\phi \circ \nabla v) f=\int_{\mathbb{R}^{2}} \phi(y) \operatorname{deg}(\nabla v, U, y) \mathrm{d} y \quad \begin{aligned} & \forall \phi \in L^{\infty}(U \Subset \omega) \\ & \operatorname{supp} \phi \subset \mathbb{R}^{2} \backslash(\nabla v)(\partial U) .\end{aligned}$
Proof. (...)

- $-\frac{1}{2} \int\left\langle\nabla^{\perp}\left(\phi \circ \nabla v_{\varepsilon}\right), \operatorname{curl}\left(\nabla v_{\varepsilon} \otimes \nabla v_{\varepsilon}-(\nabla v \otimes \nabla v)_{\varepsilon}\right)\right\rangle$ bounded by: $C \varepsilon^{\alpha-1} \varepsilon^{2 \alpha-1}=C \varepsilon^{3 \alpha-2} \quad \rightarrow 0$ when $\alpha>\frac{2}{3}$.

Lemma (Friedlander-L-Pavlovic-Shvydkoy 2016)

The degree formula holds as well for: $v \in C^{1} \cap B_{3, c_{0}}^{5 / 3}, f \in L^{1}$.
because the flux:

$$
\begin{aligned}
& \int\left\langle\nabla^{\perp}\left(\phi \circ \nabla S_{Q} v\right), \operatorname{curl}\left(\nabla S_{Q} v \otimes \nabla S_{Q} v-S_{Q}(\nabla v \otimes \nabla v)\right)\right\rangle \\
& \rightarrow 0 \text { as } Q \rightarrow \infty .
\end{aligned}
$$

Proof of rigidity

Developable case: Assume $f=0$, so: $\operatorname{deg}(\nabla v, U, y)=0 \forall y \notin \nabla v(\partial U)$.

- Need: $\operatorname{lnt}(\nabla v(\omega))=\emptyset$. Then Pogorelov results \Rightarrow developab.
- \exists Cesar-type construction (Maly-Martio) of $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$: $\operatorname{deg}(u, \cdot, \cdot)=0$ but $u(\omega)$ has full measure!
- Main step: use gradient structure of $u=\nabla v$ to show $\forall U \Subset \omega$: $\nabla v(U) \subset \nabla v(\partial U)$, which has measure 0 by $\nabla v \in C^{0, \frac{2}{3}+}$.

Convex case: Assume $f>0$, so: $\operatorname{deg}(\nabla v, U, y)>0 \forall y \notin \nabla v(\partial U)$.

- $\nabla v \in B V$ i.e.: $\quad \sum_{i=1}^{N}\left|\nabla v\left(E_{i}\right)\right| \leq \int f<\infty \quad \forall\left\{E_{i}\right\}_{i=1}^{N} \in \omega$ disjoint.
- $\operatorname{Graph}(v)$ is a surface of bounded extrinsic curvature and its every regular point is elliptic. Then Pogorelov results \Rightarrow v is convex or concave in a nbhd of any x regular
- The above sets ω_{r}^{+}and ω_{r}^{-}are both open, and: $\forall x \notin \omega_{r}^{+} \cup \omega_{r}^{-} \quad \exists$ line L from x to $\partial \omega$ with $\nabla v \equiv$ const on L.
- Conclusion: $\omega=\omega_{r}^{+}$or $\omega=\omega_{r}^{-}$.

Convex integration for Monge-Ampère

Given $v_{0}:(0,1) \rightarrow \mathbb{R}$ with $\left(v_{0}^{\prime}\right)^{2}<1$
want: $v_{n}^{\text {uniformly }} v_{0}$ with $\left(v_{n}^{\prime}\right)^{2}=1$ more oscillations as $n \rightarrow \infty$

- Decomposition into primitive metrics.

Write: $\quad \mathcal{A}=S_{2 \times 2}-\left(\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla w_{0}\right)>0$
Hence: $\mathcal{A}(x)=\sum_{k=1}^{3} \phi_{k}^{2}(x) \eta_{k} \otimes \eta_{k} \quad$ where $\quad \eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{S}^{1}$

- Improvement by steps. (v_{0}, w_{0}) given. Fix $\lambda>0$. Find (\bar{v}, \bar{w}) so that:
$(*) \nabla \bar{v} \otimes \nabla \bar{v}+\operatorname{sym} \nabla \bar{w}=\left(\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla w_{0}\right)+\phi_{1}^{2}(x) \eta_{1} \otimes \eta_{1}+O\left(\frac{1}{\lambda}\right)$
Let $\eta_{1}=e_{1}$ and define: $\bar{v}=v_{0}+$ correction, $\bar{w}=w_{0}+$ correction

Convex integration for Monge-Ampère

- $\left(v_{0}, w_{0}\right)$ given. Fix $\lambda>0$. Find (\bar{v}, \bar{w}) so that:

$$
D=(\nabla \bar{v} \otimes \nabla \bar{v}+\operatorname{sym} \nabla \bar{w})-\left(\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla w_{0}\right)=\phi_{1}^{2} e_{1} \otimes e_{1}+O\left(\frac{1}{\lambda}\right)
$$

Define: $\bar{v}=v_{0}+\phi_{1}(x) \frac{V\left(\lambda x_{1}\right)}{\lambda}$

$$
\bar{w}=w_{0}-2 \phi_{1}(x) \frac{\widetilde{V}\left(\lambda x_{1}\right)}{\lambda} \nabla v_{0}+\phi_{1}^{2}(x) \frac{W\left(\lambda x_{1}\right)}{\lambda} e_{1}
$$

Then: $\quad \nabla \bar{v}=\nabla v_{0}+\phi_{1} V^{\prime} e_{1}+O\left(\frac{1}{\lambda}\right)$

$$
\nabla \bar{w}=\nabla w_{0}-2 \phi_{1} V^{\prime} e_{1} \otimes \nabla v_{0}+\phi_{1}^{2} W^{\prime} e_{1} \otimes e_{1}+O\left(\frac{1}{\lambda}\right)
$$

$$
D=\phi_{1}^{2} \underbrace{\left(\left(V^{\prime}\right)^{2}+W^{\prime}\right)}_{\text {want }=1} e_{1} \otimes e_{1}+O\left(\frac{1}{\lambda}\right) . \quad \text { Take: } \begin{aligned}
V(t) & =\frac{1}{\sqrt{2 \pi}} \sin (2 \pi t) \\
W(t) & =-\frac{1}{4 \pi} \sin (4 \pi t)
\end{aligned}
$$

- In 3 steps, improving by: $\phi_{1}^{2}(x) \eta_{1} \otimes \eta_{1}, \phi_{2}^{2}(x) \eta_{2} \otimes \eta_{2}$, $\phi_{3}^{2}(x) \eta_{3} \otimes \eta_{3}$, we get: $\quad \nabla \bar{v}_{\lambda} \otimes \nabla \bar{v}_{\lambda}+\operatorname{sym} \nabla \bar{w}_{\lambda}=S_{2 \times 2}+O\left(\frac{1}{\lambda}\right)$

Improvement by stages

- Improvement by stages:

$$
\begin{aligned}
&\left(\bar{v}_{\lambda}, \bar{w}_{\lambda}\right) \xrightarrow{\mathcal{C}^{1, \alpha}}\left(v_{n}, w_{n}\right) \text { with: } \nabla v_{n} \otimes \nabla v_{n}+\operatorname{sym} \nabla w_{n}=S_{2 \times 2} \\
& \text { and: }\left\|\left(v_{n}, w_{n}\right)-\left(v_{0}, w_{0}\right)\right\|_{C^{0}} \leq \frac{1}{n}
\end{aligned}
$$

- Stage: Given (\hat{v}, \hat{w}) and $\lambda>1$, we obtain (\bar{v}, \bar{w}) such that: calling $\hat{E}:=\|\hat{\mathcal{A}}\|_{0}=\left\|S_{2 \times 2}-(\nabla \hat{v} \otimes \nabla \hat{v}+\operatorname{sym} \nabla \hat{w})\right\|_{0}$

$$
\|\bar{v}-\hat{v}\|_{0}+\|\bar{w}-\hat{w}\|_{0} \leq C \frac{\hat{E}^{1 / 2}}{\lambda}
$$

$$
\|\bar{v}-\hat{v}\|_{1}+\|\bar{w}-\hat{w}\|_{1} \leq C \hat{E}^{1 / 2} \Rightarrow\|\cdot\|_{1} \sim \lambda^{-m / 2}
$$

$$
\|\bar{v}-\hat{v}\|_{2}+\|\bar{w}-\hat{w}\|_{2} \leq C\left(1+\|\hat{v}\|_{2}+\|\hat{w}\|_{2}\right) \lambda^{3} \Rightarrow\|\cdot\|_{2} \sim \lambda^{3 m}
$$

$$
\bar{E}:=\left\|S_{2 \times 2}-(\nabla \bar{V} \otimes \nabla \bar{v}+\operatorname{sym} \nabla \bar{w})\right\|_{0} \leq C \frac{\hat{E}}{\lambda} \Rightarrow \bar{E}_{m} \sim \lambda^{-m}
$$

- Iterate and interpolate by: $\|\cdot\|_{0, \alpha} \leq\|\cdot\|_{0}^{1-\alpha}\|\cdot\|_{1}^{\alpha}$

$$
\Rightarrow \quad\left\|\bar{v}_{m+1}-\bar{v}_{m}\right\|_{1, \alpha} \leq C \lambda^{-\frac{m}{2}(1-\alpha)} \lambda^{3 m \alpha}=C \lambda^{\left(\frac{7}{2} \alpha-\frac{1}{2}\right) m}
$$

Thus to get: $\left(\bar{v}_{m}, \bar{w}_{m}\right) \rightarrow(v, w)$ in $C^{1, \alpha}$, we need: $\alpha<\frac{1}{7}$.

Improvement by stages

- (...) Iterate and interpolate by: $\|\cdot\|_{0, \alpha} \leq\|\cdot\|_{0}^{1-\alpha}\|\cdot\|_{1}^{\alpha}$

$$
\Rightarrow \quad\left\|\bar{v}_{m+1}-\bar{v}_{m}\right\|_{1, \alpha} \leq C \lambda^{-\frac{m}{2}(1-\alpha)} \lambda^{3 m \alpha}=C \lambda^{\left(\frac{7}{2} \alpha-\frac{1}{2}\right) m}
$$

Thus to get: $\left(\bar{v}_{m}, \bar{w}_{m}\right) \rightarrow(v, w)$ in $\mathcal{C}^{1, \alpha}$, we need: $\alpha<\frac{1}{7}$.

- Better regularity expected if one can reduce the number of steps:

$$
2 \text { steps in stage } \Rightarrow \alpha<\frac{1}{5} ; \quad 1 \text { step } \Rightarrow \alpha<\frac{1}{3} \text {. }
$$

- 2 steps: Replace \mathcal{A} by a diagonal $\overline{\mathcal{A}}$, at each stage.

$$
\begin{aligned}
& \mathcal{A}=S_{2 \times 2}-\left(\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla w_{0}\right)=\sum_{k=1}^{3} \phi_{k}^{2} \eta_{k} \otimes \eta_{k}>0 \\
& \overline{\mathcal{A}}=S_{2 \times 2}-\left(\nabla v_{0} \otimes \nabla v_{0}+\operatorname{sym} \nabla\left(w_{0}+\bar{w}\right)\right)=\mathcal{A}-\operatorname{sym} \nabla \bar{w}=\phi^{2} / d_{2},
\end{aligned}
$$

through: curl curl $\mathcal{A}=\operatorname{curl} \operatorname{curl}(g / d)=\Delta g, \quad\|g\|_{\mathcal{C}^{0, \beta}} \leq C\|\mathcal{A}\|_{C^{0, \beta}}$.
Take: $\operatorname{sym} \nabla \bar{w}=\mathcal{A}-\overline{\mathcal{A}}, \quad \phi^{2}=g>0$. Then:

$$
\|\bar{w}\|_{C^{1, \beta}} \leq C\left(\|\mathcal{A}\|_{\mathcal{C}^{0, \beta}}+\|\overline{\mathcal{A}}\|_{\mathcal{C}^{0, \beta}}\right) \leq C\left(\|\mathcal{A}\|_{C^{0, \beta}}+\|g\|_{\mathcal{C}^{0, \beta}}\right) \leq C\|\mathcal{A}\|_{C^{0, \beta}} .
$$

Thank you for your attention

